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We evaluate numerically-precise Monte Carlo (MC), Quasi-Monte Carlo (QMC) and Randomised
Quasi-Monte Carlo (RQMC) methods for computing probabilistic reachability in hybrid systems
with random parameters. Computing reachability probability amounts to computing (multidimen-
sional) integrals. In particular, we pay attention to QMC methods due to their theoretical benefits
in convergence speed with respect to the MC method. The Koksma-Hlawka inequality is a standard
result that bounds the approximation of an integral by QMC techniques. However, it is not useful in
practice because it depends on the variation of the integrand function, which is in general difficult to
compute. The question arises whether it is possible to apply statistical or empirical methods for esti-
mating the approximation error. In this paper we compare a number of interval estimation techniques
based on the Central Limit Theorem (CLT), and we also introduce a new approach based on the CLT
for computing confidence intervals for probability near the borders of the [0,1] interval. Based on our
analysis, we provide justification for the use of the developed approach and suggest usage guidelines
for probability estimation techniques.

1 Introduction

Reachability is one of the fundamental problems in verification and model checking. Given a system
model and a set of “goal” states (indicating (un)wanted behaviour), does the system eventually reach
these states? The generalisation of this problem for stochastic systems is called probabilistic reachability,
and it amounts to compute the probability that the system reaches a goal state.

Checking reachability in hybrid systems is an undecidable problem for all but the simplest systems
(timed automata) [2]. Formal verification of hybrid systems can include verifying satisfiability of for-
mulas involving real variables, which is known to be an undecidable problem when, e.g., trigonometric
functions are involved [20]. In order to combat the undecidability of general sentences over the reals,
Gao, Avigad and Clarke defined the notion of δ -complete decision procedure [11]. This approach has
been extended to a bounded probabilistic reachability method with statistically valid enclosures for the
probability that a hybrid system can reach a goal state within a given time bound and number of steps
[18]. In particular, we consider the k-step reachability probability for parametric hybrid systems with
random parameters. The ProbReach tool [17] implements such a method and computes under- and over-
approximation of the reachability probability, which amounts to computing multi-dimensional integrals.
There are three possible ways to compute such integrals - formal, Monte-Carlo (MC) and Quasi-Monte
Carlo (QMC). The number of system evolutions to explore in order to accurately compute integrals grows
exponentially with respect to the number of dimensions [20]. This motivates a combination of MC and
QMC methods and numerical decision procedures in order to define efficient, numerically accurate esti-
mation techniques.

It is well-known that MC methods are based on the Law of Large Numbers and random sampling.
Instead, QMC methods are based on deterministic sampling from so-called quasi-random sequences. The

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 An evaluation of estimation techniques for probabilistic reachability

error estimation of the QMC method can be computed theoretically by the Koksma-Hlawka inequality.
Unfortunately, in practice its use is connected with a number of calculation difficulties [14]. The terms of
quasi-random sequences are statistically dependent, so the Central Limit Theorem (CLT) can not be used
for estimating the integration error. At the same time we can successfully use the CLT for estimating the
error of the Randomised Quasi-Monte Carlo (RQMC) methods.

The aim of this paper is to compare different interval estimation techniques, in particular in the
extreme cases of probability close to 0 or 1. A problem of many confidence interval (CI) techniques is
that the actual coverage probability of the interval near the boundaries (0 and 1) can be poor [16] [6].

The paper is structured as follows: In Section 2, we briefly introduce probabilistic reachability for
stochastic parametric hybrid systems. In Section 3, we present integral estimation methods including
MC, QMC and RQMC. Additionally, we consider recent approach to QMC variance calculation for
statistical error estimation. In Section 4, we examine CI error estimation with approaches based on the
standard CLT interval and on the Beta function. In Section 5, we empirically compare those CI estimation
techniques on five benchmarks, and derive usage guidelines. In Section 6, we provide conclusions and
suggest future work in the area.

2 Probabilistic Reachability

Hybrid systems provide a framework for modelling real-world systems that combine continuous and
discrete dynamics [2]. In particular parametric hybrid systems (PHSs) [18] represent continuous and
discrete dynamic behavior dependent on initial parameters, which remain unchanged during the system
evolution. Such systems can both flow, described by a differential equation and jump, described by
difference equations or control graphs.

In order to combat the undecidability of reasoning over real sentences Gao et al. [11] defined δ -
complete decision procedures, which correctly decide whether a slightly relaxed sentence is satisfi-
able or not. Let δ ∈ Q+ ∪ {0} be a constant and φ a bounded Σ1-sentence in the standard form:
φ = ∃I1x1, ...,∃Inxn :

∧m
i=1(

∨ki
j=1 fi j(x1, ...,xn) = 0), where the fi j(x1, ...,xn) are compositions of Type

2-computable functions (these are essentially “numerically computable” real functions, including tran-
scendental functions and solutions of differential equations). The δ -weakening of φ is the formula:
φ δ = ∃I1x1, ...,∃Inxn :

∧m
i=1(

∨ki
j=1 | fi j(x1, ...,xn)| ≤ δ ). The bounded δ -SMT problem asks for the follow-

ing: given a sentence φ of the above form and δ ∈Q+, correctly decide one of the following:

• unsat: φ is false,

• δ -true: φ δ is true.

If the two cases overlap either decision can be returned. Standard bounded reachability questions over
PHSs can be coded as Σ1 sentences and “δ -decided” by δ -complete decision procedures [13].

In this paper we are concerned with stochastic PHS, which introduce random parameters to an oth-
erwise deterministic PHS. Bounded k-step reachability in PHSs aims at finding the probability that for
the given initial conditions, the system reaches a goal state in k discrete transitions within a given finite
time. It can be shown that this probability can be computed as an integral of the form

∫
G dP, where G

denotes the set of all random parameter values for which the system reaches a goal state in k steps, and
P is the probability measure associated with the random parameters [18].
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3 Integral Estimation Methods

3.1 Monte Carlo Method

Consider the integral I =
∫ b

a f (y)dy, and a random variable U on [a,b]. The expectation of f (U) is:

E[ f (U)] =
∫ b

a
f (y)ϕ(y)dy

where ϕ is the density of U . If U is uniformly distributed on [a,b], then the integral becomes:

I =
∫ b

a
f (y)dy = (b−a)E[ f (U)].

If we take N points, uniformly distributed on [a,b], and compute the sample mean 1
N ∑

N
i=1 f (ui), we

obtain the MC integral estimation: ∫ b

a
f (y)dy≈ (b−a)

1
N

N

∑
i=1

f (ui) (1)

According to the Strong Law of Large Numbers, this approximation is convergent (for N→ ∞) to I with
probability one. The variance of the MC estimator (1) is:

Var(MC) =
∫ b

a
...
∫ b

a

(
1
N

N

∑
i=1

f (ui)− I
)2

du1...duN =
σ2

f

N
(2)

MC integration error mean equals to
σ2

f
N , where σ2

f is the integrand variance, which is assumed to exist.
In practice, the integrand variance is often unknown. That is why the next estimation for the CI is instead
used:

σ̂
2
f =

1
N−1

N

∑
i=1

(
f (ui)−

1
N

N

∑
i=1

f (ui)

)2

This estimator possesses the unbiasedness property: E[σ̂2
f ] = σ2

f .

3.2 Quasi-Monte Carlo Method

QMC methods can be regarded as a deterministic counterpart to classical MC method. Unlike MC
integration, which uses estimates (1) with randomly selected points, QMC methods select the points ui

deterministically. Specifically, QMC techniques produce deterministic sequences of points that provide
the best-possible spread over the integration domain. These deterministic sequences are often referred
to as low-discrepancy sequences. The Sobol sequence [19] is a well-known example of low-discrepancy
sequence. In Figure 1, we present a simple example of the comparison between Sobol and pseudorandom
points distribution. An effective way to use the QMC method is by performing a change of variables to
reduce integration to the [0,1] domain. When we need to integrate over a large domain [a,b], that avoids
multiplying the QMC estimate by a large factor (b−a) as required by (1).

A QMC advantage with respect to MC is that its error is O
( 1

N

)
, while the MC error is O

(
1√
N

)
,

where N is the sample size. The Koksma-Hlawka inequality bounds the error of QMC estimates, but in
practical applications it is very hard to estimate [14], thereby hampering the use of QMC methods. As
such, other methods for estimating the QMC error need to be developed.
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Figure 1: Sobol sequence, uniform pseudorandom and randomised Sobol sequence points (obtained
by transformation Γ = (X+ ε)mod1, where ε is a random sample from MC sequence and X is low-
discrepancy sample from Sobol sequence) distribution in the 2-dimensional unit space. The comparison
is based on the first 300 points of sequences.

Qint Cubature Method. Ermakov and Antonov [5] have recently introduced a new method for QMC
variance estimation. To construct an estimate of the integral I they use the set of random quadrature
formulas, which were introduced by the Ermakov-Granovsky theorem [10]. This theorem allows us to
construct N-point formulas with two important properties: the unbiasedness property for integral I and
the accuracy property for the considered Haar system. The nodes of the formula are random variables
with distribution density:

φ(u1,u2, ...,uN) =

{
NN

N! if (u1,u2, ...,uN) ∈ Lat(i1, i2, ..., iN)
0 otherwise

where Lat(i1, i2, ..., iN) is a Latin set that relates to the permutation (i1, i2, ..., iN) and can be defined by
the next condition:

(u1,u2, ...,uN) ∈ Lat(i1, i2, ..., iN)⇔∀ j ∈ {1,2, ...,N}u j ∈Ui j

where Ui j is a set of permuted orthonormal Haar functions [5].
The variance of the constructed cubature formula Cub[ f ] = 1

N ∑
N
i=1 f (ui) can be calculated as:

DCub[ f ] =
∫

U N
Cub[ f ]2dφ −

(∫
U N

Cub[ f ]dφ

)2

=

= DMC[ f ]+
1
N
(a1 +a2 + ...+aN)

2−a2
1−a2

2− ...−a2
N = DMC[ f ]−

1
N ∑

i< j
(ai−a j)

2,

where DMC is the variance of MC method (2) and ai =
∫
Ui

f (u)µ(du) for i = 1,2, ...,N.
In other words, we can redefine the integral estimation variance as:

Var(QMC) =Var(MC)− 1
N ∑

i< j
(ai−a j)

2 . (3)
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3.3 Randomised Quasi-Monte Carlo

As discussed earlier, the practical application of QMC is limited by the difficulty of computing an esti-
mate of the integration error. However, allowing randomization into the deterministic QMC procedure
enables constructing CIs. A Randomised QMC (RQMC) procedure can be described as follows. Suppose
that X = {x1, ...,xn} is a deterministic low-discrepancy set. By means of a transformation X̃ = Γ(X,ε)
a finite set X̃ is generated by the random variable ε and has the same quasi-random properties as set X
(see Figure 1). For a randomised set X̃i we construct a RQMC estimate similar to (1):

RQMC j,n =
1
n

n

∑
i=1

f (X̃i, j) (4)

for 0 < j 6 r, where r is the total number of different pseudo-random sequences. Then, we take their
average for overall RQMC estimation (4):

RQMCn =
1
r

r

∑
j=1

RQMC j,n. (5)

If we choose the Γ transformation in such a way that each of the estimates RQMC j,n has the unbiasedness
property, i.e., ∀ j E [RQMC j,n] = I, (e.g. Γ = (X+ε) mod 1), then the estimator (5) will also be unbiased,
i.e., E[RQMCn] = I. By independence of the samples used in (4) and (5), we have that:

Var(RQMCn) =
∑

r
j=1Var(RQMC j,n)

r
.

Thus, we have the following variance estimation:

V̂ar(RQMCn) =
1

r(r−1)

r

∑
j=1

(
RQMC j,n−RQMCn

)2
.

3.4 Validated MC and QMC

Let us consider a hybrid system H with random parameters only. For any parameter value p from the
initial parameters distribution we introduce the Bernoulli random variable X , which takes 1 if system
H reaches the goal in k steps for p and 0 otherwise. Since in general we can not sample X because
of undecidability, we instead consider two Bernoulli random variables: Xsat , which takes 1 if we can
correctly decide that system H reaches the goal in k steps for p and 0 otherwise; Xusat , which takes 0 if
we can correctly decide that system H does not reach the goal and 1 otherwise [18]. Therefore:

Xsat 6 X 6 Xusat

and thus:
E[Xsat ]6 E[X ]6 E[Xusat ] .

By the definition of expectation, and denoting PR as the domain of the random parameters of H, we get:∫
PR

Xsat(p)d p 6
∫

PR

X(p)d p 6
∫

PR

Xusat(p)d p . (6)

We take the sample approximation of (6) and obtain

1
N

N

∑
i=1

Xsat(pi)6
1
N

N

∑
i=1

X(pi)6
1
N

N

∑
i=1

Xusat(pi)

where the pi’s can be sampled by using low-discrepancy sequences for QMC methods or pseudo-random
sequences for MC methods.
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4 Confidence Interval Estimation and Error Analysis

In the following we shall use the notation blow:
• X̃ = 1

n ∑
n
i=1 xi - the sample mean.

• Ca = Quant(1− a
2) - the inverse cumulative distribution function of a normal random variable with

lmean 0 and standard deviation 1; parameter a defines the confidence level at 1−a.
• p̂ = ns/n - the binomially-distributed proportion, where: ns - the number of “successes” and n f - the
number of “failures” in Bernoulli trial process; n - the total number of Bernoulli “trials”.
• q̂ = 1− p̂.

4.1 Intervals Based on the Standard CLT Interval

Modified Central Limit Theorem interval. First, we consider the case when the sample xi is extracted
from the normal distribution N(µ,σ2) with unknown parameter µ and known σ2, where µ is the mean
or expectation of the distribution and σ2 is the variance. Here, µ can be approximated by the sample
mean: µ ≈ X̃ . To clarify this approximation, we construct a CI covering the parameter µ with a given
confidence probability:

CICLT =

(
X̃−Ca

σ√
n

; X̃ +Ca
σ√

n

)
(7)

If the variance σ2 is unknown, we can use the same CI by replacing σ with the sample standard deviation

s=
√

1
n−1 ∑

n
i=1(xi− X̃)2. This method is widely used for estimating the distribution of the error regarding

the binomially-distributed proportions. Many related works [7, 6, 8] note that the CICLT approximation
can be poor when applied to Bernoulli trials with p̂ close to 0 or 1.

In order to resolve this problem, we introduce a new method for variance estimation, which uses a
sequential estimation of the sample standard deviation and calculates CICLT (7) at every new sample. Our
solution simply approximates the sample standard deviation with 1

n2 at the initial stages of the compu-
tation if p̂ is equal to 0 (or 1) and propagates it through the computation until the necessary number of
samples to construct the interval are obtained. We show the advantages of this approach in Section 5.

Wilson interval. It was introduced by Wilson in 1927 in his fundamental work [9] and uses the inver-
sion of the CLT interval. Additionally, it involves a modified center by quantile formula mean value. The
interval has the following form:

CIW =

(
ns +

C2
a

2
n+Ca

− Ca
√

n
n+C2

a

√
p̂q̂+

C2
a

4n
;
ns +

C2
a

2
n+Ca

+
Ca
√

n
n+C2

a

√
p̂q̂+

C2
a

4n

)
(8)

This interval has some obvious advantages - it can not exceed probability boundaries, and it can be easily
calculated even if p̂ is 0 or 1. At the same time, CIW has downward spikes when p̂ is close to 0 and 1,
because it is formed by an inverted CLT approximation.

Agresti-Coull interval. This method was introduced by Agresti and Coull in 1998 [1]. One of the
most interesting features of this CI is that it makes a crucial assumption about ns and n f . This interval
formally adds two successes and two failures to the obtained values in case of 95% confidence level and
then uses the CLT method. The interval can be constructed as follows:

CIAC =

(
X̃− 1

n+C2
a
(ns +

1
2

C2
a); X̃ +

1
n+C2

a
(ns +

1
2

C2
a)

)
(9)
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Additionally, this interval can be modified by using the center of the Wilson interval (8) in place of p̂:

CIACW =

(
ns +

C2
a

2
n+Ca

−Ca

√
p̂q̂(n+C2

a);(
ns +

C2
a

2
n+Ca

−Ca

√
p̂q̂(n+C2

a)

)
. (10)

Logit interval. The Logit interval is based on a transformation of the standard interval [8]. It uses the
empirical logit transformation: λ = ln( p̂

1−p̂) = ln( ns
n−ns

). The variance of λ is: V̂ar(λ ) = n
ns(n−ns)

and the
Logit interval can be estimated as:

CIL =

(
eλL

1+ eλL
,

eλU

1+ eλU

)
(11)

where the lower bound transformation is λL = λ −Ca

√
V̂ar(λ ) and the upper bound transformation is

λU = λ +Ca

√
V̂ar(λ ).

Anscombe interval. This interval was proposed by Anscombe in 1956 [4] and is based on the Logit

interval (11). The key difference is in λ and V̂ar(λ ) estimation, where λ is defined as λ = ln( ns+
1
2

n−ns+
1
2
)

and the variance is V̂ar(λ ) = (n+1)(n+2)
n(ns+1)(n−ns+1) . On this basis, the Anscombe interval CIAnc is estimated in

the same way as Logit interval (11).

Arcsine interval. It uses a variance-stabilising transformation of p̂. In 1948, Anscombe introduced an
improvement [3] for achieving better variance stabilisation by replacing p̂ to p† = ns+3/8

n+3/4 , obtaining

CIArc =

(
sin(arcsin(

√
p†)− Ca

2
√

n
)2,sin(arcsin(

√
p†)+

Ca

2
√

n
)2
)

. (12)

4.2 Alternative Intervals Based on the Beta-Function

Bayesian interval. This method is based on the assumption that the (unknown) probability p to es-
timate is a random quantity [21]. The Bayesian interval is also called “credible”, because it computes
the posterior distribution of the unknown quantity by using its prior distribution and Bayes theorem.
The prior distribution can be constructed by means of the Beta distribution, which is widely used for
computing inferences on p. If p has a prior distribution Beta(α,β ) then p has posterior distribution
Beta(ns +α,n−ns +β ). We can construct a Bayesian equal-tailed interval by the formula:

CIB =
(

Beta−1(
a
2
,ns +α,n−ns +β ),Beta−1(1− a

2
,ns +α,n−ns +β )

)
(13)

where, Beta−1(a,α,β ) is the inverse of the cumulative distribution function of Beta(α,β ).

Jeffreys interval. The Jeffreys interval is a Bayesian interval and uses the Jeffreys prior [15], which
involves a non-informative prior invariant transformation given by the Beta distribution with parameters
(1

2 ,
1
2). The probability density function of the Beta distribution is f (x;α,β ) = 1

B(α,β )x
α−1(1− x)β−1,

where 0≤ x≤ 1, α,β > 0 and B is beta function. We can form Jeffreys equal-tailed interval by (13) with
parameters (1

2 ,
1
2).
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Clopper-Pearson interval. This method was introduced by Clopper and Pearson in 1934 [7] and is
based on the inversion of binomial test, rather than on approximations. The Clopper-Pearson interval is:

CICP =
(

Beta−1(
a
2
,ns,n−ns +1),Beta−1(1− a

2
,ns +1,n−ns)

)
. (14)

The CICP interval states that the computed coverage probability is always above or equal to the 1− a
confidence level. In practice, it can be achieved in cases when n is large enough, while in general, the
actual coverage can exceed 1−a. We can conclude from the equation (14) that due to the absence of the
α and β parameters, the appropriate result can be achieved only by increasing number of “trials”.

5 Results

We apply CI estimation methods, based on the standard interval with the RQMC technique and Bayesian
CI estimation method with the MC technique. All our results are the average of 10 runs: in the RQMC
case 10 sequences were obtained by changing the pseudo-random points ε of the equation Γ = (X+
ε)mod1, while the Sobol sequence points X remain the same; in the MC case we used the same 10
pseudo-random points sequences, which were used for RQMC calculation.

5.1 Border Probability Cases

The true probability values, which are shown in Section 5.1 and Section 5.2 were obtained via pseudo-
random number generation that produces boolean values according to a Bernoulli distribution.

Intervals based on CLT and Bayesian interval. The comparison of the different CIs estimation tech-
niques for extreme probability cases (near 0 bound) with accuracy ε = 5× 10−3, which is presented
in Figure 2, shows that all intervals except the Arcsin interval (12) (see plot c = 0.99 of Figure 2 for
probability=0.001) contain the true probability value within their bounds. The Bayesian method tends to
overestimate the true probability values according to their increase while CICLT tends to underestimate
them. Also, it is interesting to note that the most accurate center value is returned by the Agresti-Coull
interval. The reason why CICLT tends to include the true probability value near the upper bound of the
interval is directly related to the number of samples. As it is shown in Figure 2 for true probability values
0.007 - 0.01, the CICLT center is moving up evenly to the true probability value with the increase of the
confidence value. It echoes the number of samples grow for obtaining the necessary confidence level.
For the other true probability values (0.001-0.006) although this drift is saved, it can not be seen from the
Figure, because of the small difference in the number of samples for all confidence levels, which causes
the CI center to move wave-like.

The results in Figure 2 also demonstrate that the CIs based on the standard interval can have interval
size smaller than its nominal value even for “large” sample sizes. It can be seen that every confidence
level from 0.99 to 0.99999 displays further instances of the inadequacy of the CIs size. Also, Figure 2
shows that in spite of the “large” sample size (according to the confidence level), the size of the CIB,
CICLT and CIACw intervals decreases significantly as p moves toward 0. Also, CIs based on the standard
interval have interval size changes because of two reasons: absence of a posteriori estimate and skewness
of the underlying binomial distribution.

In Figure 3 we plot the number of samples that different CI estimation techniques used to return
intervals with accuracy ε = 5×10−3 for different confidence levels. It can be clearly seen from the plots
that with increasing of the confidence all CIs based on the standard interval outperform the Bayesian
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CI. The plot with c = 0.99999 in Figure 3 displays that the best techniques in the number of samples
from the best to the worst are: CICLT , Qint, CIArc, CIW , CIL, CIAns, CIACW and CIB. The CIL and CIAnc

techniques always show almost the same results near the bounds, because of the modification of the CIL.
Initially, CIL is not able to deal with probability values near the bounds according to its λ formula (see
Section 4.1). It has been modified to use the Anscombe estimation formula in cases when p̂ = 0 or p̂ = 1.
It is also important to note that the difference in number of samples between CICLT , CIArc and CIB for
extreme probability cases is significant. For example in the plot with c = 0.9999 of Figure 3 the number
of samples used to obtain interval for p = 0.005 equals to 1,078 for CICLT , 2,662 for the CIArc and 4,440
for CIB.

This trend is not preserved with the increase of the probability value from 0 to 0.5 and with the
decrease from 1 to 0.5, respectively. Figure 4 shows that the difference in number of samples between all
CIs (except CIArc) is almost undetectable. At the same time, CIArc shows very “bad” results in comparison
with the others, as opposed to its results for probability values at the extremes.

Summarizing, for probability values near the bounds (0 or 1) the modified CLT method achieves
better results in number of samples in comparison with the others (see Figure 3). For probability values
away from the bounds, CLT, Wilson, Agresti–Coull, Logit and Anscombe methods are all very similar
(see Figure 4), and so for such probabilities we come to the conclusion that the CLT interval should
be recommended, due to its simplest form. Meanwhile for smaller sample sizes, the CICLT is strongly
preferable to the others and so might be the choice where sampling cost is paramount.

Qint method results. In Figure 2 and Figure 3 we also plotted the results of the recently developed
Qint algorithm. In our research we used Qint with n = k×2s, where k = 2. These parameters were used
to form n points of the Sobol sequence xi with numbers i ∈ Ik,s = {1,2, ...,k× 2s}. These parameters
were chosen on the basis of the original study of the Qint method [5] as the most universal and reliable.
As it was described earlier, Qint uses a cubature randomization method and provides the integral estima-
tion variance (3). This formula is used to obtain a CI by calculating the standard interval (7) with our
modification.

In Figure 2 we display the Qint intervals distribution for border probability values. We can see from
the plots that Qint CI always contains the true probability value. At the same time for all confidence
levels from 0.99 to 0.99999 and for true probability values 0.006-0.01 Qint shows better centration than
CIB and CICLT . The greatest differences between the Qint CLT center result and the true probability
values are: 0.00245 for c = 0.99 (p=0.004), 0.00191 for c = 0.999 (p=0.004), 0.00168 for c = 0.9999
(p=0.003), 0.00141 for c= 0.99999 (p=0.004), while for example this difference for CIB reaches 0.00518
for c = 0.99 (p=0.007), 0.00235 for c = 0.999 (p=0.008), 0.00181 for c = 0.9999 (p=0.008), 0.00143 for
c = 0.99999 (p=0.008).

We can see in Figure 3 that, as it was expected, Qint uses fewer samples than other CIs but CICLT . Our
modification allows the Qint algorithm to return intervals even if ns = 0, which significantly decreases
the final sample size for 10 runs. With the increase in n, which leads to further sampling and better
reflects the behavior of the underlying random process, the effectiveness of the method decreases, and
the benefit no longer seem so significant.

The fact that with the chosen parameters Qint can not outperform our modified CICLT leads us to the
conclusion that our use of the standard deviation formula with 1

n2 lower bound is a rather effective and
simple solution. However, the deep range of the possible parameters variation as well as novelty of the
Qint algorithm lead us to believe that further research towards their comparison is needed.
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Figure 2: Comparison of confidence interval distribution for probability values near 0, interval size equal
to 10−2 and c - confidence level.
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Figure 3: Comparison of sample size for probability values near 0, interval size equal to 10−2 and c -
confidence level.

Figure 4: Comparison of sample size for probability values from 0 to 1, interval size equal to 10−2 and
confidence level equal to 0.99999.
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5.2 MC and QMC Error Comparison

Another key difference between the Bayesian CI and the CIs based on CLT is the use of MC and QMC
techniques for interval calculation. As it was described in Section 3.2, the QMC advantage in the error
size holds for all tested models. In the cases where the true error rate could not be detected due to the
probability value extremely close to 0 (“Bad” model type min and Collision (Basic) model type min),
we have that the MC absolute error line equals the true probability value, because ns = 0 was obtained.
The chaotic coverage properties of the MC method are far more persistent than they are appreciated. The
chaotic behavior does not disappear even when n is quite large and the true probability p is not near the
boundaries. For instance, in Figure 5 it is visible that even when n is quite large (i.e., tends to 10,000
samples) the actual absolute error value of the MC method reaches 5× 10−3. Hence we can conclude
that CIs estimation techniques based on MC are misleading and defective in several respects and should
not be trusted [6].

A notable phenomenon, which was noticed for the MC and QMC probability calculation is that the
actual coverage probability contains non-negligible oscillations as both p and n vary. There exist some
“unlucky” pairs (p,n) such that the corresponding absolute error is much greater than the results for
smaller n. The phenomenon of oscillation is both in n, for fixed p, and in p, for fixed n. Furthermore,
drastic changes in coverage occur in nearby p for fixed n and in nearby n for fixed p [6]. We can see it
on the simple example in Figure 6.

5.3 Tested Models Results

The results in Section 5.3 were obtained via the ProbReach tool [17] for computing bounded reachability
in stochastic parametric hybrid systems and the dReal 3 solver [12] for analyzing (standard) bounded
reachability question. Five different hybrid models were chosen for our experiments can be found at:
https://github.com/dreal/probreach/tree/master/model.

Intervals based on CLT and Bayesian interval. Based on our model set, we provide in Table 1 a
comparison of the CIs described in the Section 4, obtained via ProbReach with precision δ = 10−3,
interval size 10−2 and true probability value P is either analytically computed single probability values
or formally computed absolute (non-statistical) intervals. These parameters were chosen according to
previous work [17] as a fine trade-off between the precision of the results and the CPU time. Each model
was verified separately with different confidence level from 0.99 to 0.99999. The lowest confidence level
is often used in similar work, while the highest can provide reasonable results for real-world complex
models.

As it can be seen in Table 1, all the intervals for the various techniques overlap. The modified CICLT

approach shows very similar results to the CIB, which can be regarded as a successful implementation.
The key difference in the interval sizes can be found in the results of the “Bad” model Type min and
the Collision (Basic) model Type min. From the results we can conclude that the true probability value
is very close to 0. This allows the Bayesian, CLT and Agresti-Coull methods to form intervals, which
in reality are half of the proposed interval size 10−2, while the other techniques return “fully” sized
intervals. That happens because CIB is using posterior distribution to form the interval. At the same
time, the CICLT and CIACW calculations of the mean value return the result, which is quite close to zero.
Thus, the next step of the interval bounds computation cuts the negative part of the interval. This trend
is holding for all probability values within [0,0.001].

Table 1 also shows that with the increase of the confidence level the interval’s precision is growing,
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Model Type c CIB CICLT CIACW CIW CIL CIAns CIArc Qint

Good max 0.99 24252 24025 24038 24027 24035 24034 26681 23136
min 0,99 23451 23248 24256 24250 24253 24252 26894 23245

Bad
max 0.99 13118 12670 12841 12817 12833 12832 23006 11726
max2 0.99 27498 26954 26960 26955 26958 26958 40442 25734
min 0.99 2590 96 961 688 680 680 347 94

Deceleration max 0.99 22842 22393 22673 22517 22628 22623 24365 20318
min 0.99 11224 11073 11114 11086 11104 11104 11570 9798

Collision
(Basic)

max 0.99 9581 9318 9653 9463 9386 9381 10643 8222
min 0.99 2590 96 961 688 680 680 347 94

Collision
(Extended)

max 0.99 65109 64804 64854 64841 64932 64930 104637 62485
min 0.99 13624 13257 13486 13375 13326 13320 14737 12869

Collision
(Advanced)

max 0.99 44370 43602 43645 43640 43644 43643 51734 43524
min 0.99 9500 9081 9094 9085 9090 9089 9282 9080

Anesthesia n/a 0.99 5801 4847 5024 4952 4928 4919 5522 4804

Good max 0.99999 70422 69484 69582 69496 69530 69529 77262 68456
min 0,99999 71898 71286 71339 71293 71321 71321 79369 68994

Bad
max 0.99999 37388 36518 36771 36629 36687 36868 60006 36164
max2 0.99999 79306 79097 79125 79101 79118 79118 96442 77892
min 0.99999 5797 124 2766 1963 4136 4136 572 94

Deceleration max 0.99999 65248 65233 65330 65299 65320 65319 72114 59882
min 0.99999 33147 32969 33133 33018 33060 33060 34231 29096

Collision
(Basic)

max 0.99999 25279 24711 24834 24789 24934 24933 26045 23016
min 0.99999 5797 124 2766 1963 4136 4136 572 94

Collision
(Extended)

max 0.99999 191466 190776 191253 190894 191485 191472 376294 185456
min 0.99999 41153 38942 39745 39473 39537 39541 47923 37608

Collision
(Advanced)

max 0.99999 131517 129746 131185 129845 129934 129933 183405 127486
min 0.99999 27305 25657 25835 25736 25792 25791 29362 24569

Anesthesia n/a 0.99999 16197 15453 15834 15634 15734 15733 17845 15314

Table 2: Samples size comparison for confidence interval computation obtained via ProbReach, with
solver δ precision equal to 10−3 and interval size equal to 10−2, Type - extremum type and c - confidence
level.

Figure 5: MC (grey line) and QMC (black line) absolute er-
ror with respect to the number of samples. Model: Collision
advanced, type - max.

Figure 6: MC (grey line) and QMC (black line) absolute
error with respect to the number of samples. Model: Bad,
type - max2.
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which in turn is directly related to the usage of the inverse cumulative distribution function for normal
random variable with given confidence level in formulas for CICLT (7), CIW (8), CIACW (10) and CIArc

(12). It also results in the increase the sample size n for CIL and CIAnc.
The comparison of the obtained intervals (see Table 1) with the true probability value or interval P

shows that all CIs contain the single probability values, but CIAcr (see “Bad” type min model of Table 1),
and all CIs overlap with the true probability intervals. We can also note that the true probability intervals
of the Collision Extended, Collision Advanced, and Anesthesia models contain all confidence intervals
for all confidence levels. The reasons why Collision Basic and Deceleration models’ true probability
intervals do not contain CIs are their size, which is very small (< 0.01).

Table 2 provides very interesting results with respect to the number of samples, which were used to
find CIs obtained via ProbReach with solver precision δ = 10−3 and interval size 10−2. The number
of samples varies for different models and types. As it was noted earlier for Figure 4, the number of
samples needed for the computation grows from the bounds to the center of the [0,1] interval. The
presented models show different behaviour and probability results. The most important outcome is that
all CIs (except CIArc) show better result in number of points with respect to CIB. The best result was
shown by CICLT . It shows that the proposed CLT modification can provide reasonable results for RQMC
calculation in comparison with the well-established Bayesian MC integral calculation.

Qint method results. A comparison of the Qint method’s confidence intervals is presented in Table
1. All Qint intervals also contain single probability values and overlap with true probability intervals.
The original Qint algorithm is not able to provide results for “Bad” type min and Collision Basic type
min models, because for very small probability values like 4×10−7 and [0, 0.00201] it could not detect
ns > 0 for the chosen confidence levels and interval size. Due to this reason the original Qint algorithm
was changed by modifying the CLT method described in Section 4.1. From the results we see that that
the Qint algorithm shows great potential, which is connected with the very fast convergence rate of the
QMC method and with finding an appropriate partition (in terms of the parameters k,s).

Table 2 allows us to compare Qint’s sample sizes with those of other CIs. However, CICLT had an
advantage in the number of samples for small probability values near the border (see Figure 3), where
we can clearly see that for bigger true probability values, which is presented in the tested models except
“Bad” type min and Collision Basic type min, this trend is not preserved. On the contrary, Qint uses fewer
number of samples than other CIs and CICLT in particular (see also Figure 4). For the tested models set
with confidence c=0.99999, Qint used on average between 1,850 and 24,802 fewer samples than other
CIs techniques.

6 Conclusion and Future Work

In this paper we provide comprehensive evaluation of CIs calculation techniques based on the Monte
Carlo (MC) and Quasi-Monte Carlo (QMC) techniques. The experiments show that our modified CLT
technique is usable in practice even for complex dynamics and for probabilities close to the bounds. The
QMC-based calculation techniques we consider have excellent convergence and efficiency especially
when the number of samples is small. Based on our analysis of CIs, we suggest that our results can be
used as guidelines for probability estimation techniques. In the future we plan to provide specification
for the CI calculation by the Qint technique for the chosen models and also extend the test model range.
Possible variations of the Qint technique are also of interest. In particular, joining the CLT and Qint
methods is the next challenge for further research.
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